
'

Universal Credit System

technical documentation



Welcome!

In this document you will find detailed technical documentation of the 
Universal Credit System. It contains all the information you need to be able 
to implement and/or adapt the program to your needs.

Contents

1. Dependencies

2. Folders

3 Details

4. Example Transaction

5. Wallet

6. Assets

7. DAO

8. CMD-Mode

9. Universal Credit Contractor

10. Universal Credit Authority Link Server

11. Universal Credit Webwallet



1. Dependencies

The program depends on other programs that must be installed. During setup 
the install.sh script will perform a check if any program is missing. The 
following programs are used:

name purpose

awk used to sort/filter data
basename used to strip directory and suffix from filenames
bc used for floating point calculations
cat used to concatenate content
chmod used to change file/directory permissions
cp used to copy files
curl used to send query to TSA and request response
cut used to extract data from streams
date used for date operations
dd used to convert files
dialog used as GUI
dirname used to strip non-directory suffix from file name 
echo used to write output
expr used for calculations
find used to search files/directories
flock used to manage read locks for multi user setups 
gpg used for transaction signing
grep used to search files
head used to display heading lines of  a file
ls used to list files and directories
mkdir used to create folders and subfolders
mv used to move files
netcat used to send/request files
openssl used for TSA stamp verification
printf used to write output
rm used to delete files
sed used to read/modify text
sha224sum used to hash files
sha256sum used to hash files
sort used to sort files
stat used to get permissions of files/directories
tail used to display tailing lines of a file
tar used to create the transaction file
test used to test files
touch used to create files
tr used to convert chars
umask used to determine umask
uniq used to filter files
wc used to count lines, words, bytes
wget used to fetch certificate files of TSA from Internet



2. Folders

name description

~/assets/ contains the assets created by the users
~/backup/ contains the backups created by the user
~/certs/ contains sub folders for TSAs with certs
~/control/ contains important system files
~/keys/ contains the public key files of the users
~/lang/ contains the language files
~/proofs/ contains subfolders for users' proofs
~/theme/ contains the themes for GUI
~/trx/ contains the trx of all users
~/userdata/ contains temporary user related files

3. Details
~/assets/

Contains the assets that have been created by the users. Assets can be 
considered as tokens. Asset files are named like this:

<ASSET_SYMBOL>.<STAMP> 

<ASSET_SYMBOL> is a string. <STAMP> is the stamp in UNIX timestamp 
format (unix epoch time).

~/backup/

Contains system backups that have been triggered by the user. With these 
backup files a user is able to restore it's data if corrupted. Backup files are 
named like this:

<STAMP>.bc 

<STAMP> is the stamp in UNIX timestamp format (unix epoch time).

~/certs/

This folder contains a  subfolder for each TSA. In this subfolder are the initial 
certs for the TSAs. Currently only freeTSA is supported. 

Files are: cacert.pem (Certificate of CA)
tsa.pem (Certificate of TSA)



These certificates are used to verify the TSA files lying in /proofs/-directory via
openssl ts.

~/control/

This folder contains important system files that are used by UCS. Files in this 
folder:

config.conf configuration file
uca.conf UCA list
tsa.conf TSA list
install_config.conf default configuration file
dh.db Database for Perfect Forward Secrecy
install.dep installation dependencies
keyring.file GPG Keyring
HELP.txt help text

Furthermore all private keys of accounts that have been created on this 
machine are saved under ~/control/keys/ folder.

~/keys/

This folder contains the public keys for all users. The keys are 4096bit RSA 
keys. Creation of these keys is done via GnuPG while all keys are managed in 
keyring.file in scripts's ~/control/ directory. Keys are named as follows:

<ADDRESS>.<STAMP>

<ADDRESS> is actually a SHA-256 hash that is calculated by hashing the string
„<ACCOUNTNAME>_<PIN>_<STAMP>“ while <STAMP> is the point of creation 
in UNIX timestamp format (unix epoch time). The calculation of the hash is also
used during logon. The account name and PIN are used along with the stamps 
to find a matching key.

~/lang/

New language files will be imported automatically and can be selected in GUI. 
They will be sourced within the script at the start.
Naming of the lang-files is:

lang_<language-short>_<language-long>.conf

<language-short> is the country code e.g. EN for ENGLISH or FR for FRANCE 
while <language-long> is the name of the language in the foreign language 
e.g. SVENSKA for SWEDISH or ITALIANO for ITALIAN. You can add new files to 
this folder and the script will automatically include them in the list of languages
available.



Make sure you don’t change/remove the tags '<tag>' or '/n'! These 
tags are being used to format the graphical user interface provided by
dialog!

Everything else can be adopted to the related language. If new language files 
are named like described above the script is able to recognize them and you 
are able to select them in GUI.

~/proofs/

This folder contains a subfolder for each user and in this subfolder are the 
users' proofs (index-file, TSA query, TSA response).  The subfolders are in 
following format (per user):

/<ADDRESS>.<STAMP>/

<ADDRESS>.<STAMP> is equal to the user. The verification of the users TSA 
files in this folder is done via the openssl ts command:

freetsa.tsq (freeTSA query)
freetsa.tsr (freeTSA response)
<ADDRESS>.<STAMP>.txt (index file)

The index file contains a list of all acknowledged users with their proofs and trx.
The index file if verified using GnuPG.

~/theme/

This folder contains the themes used by the dialog command. Any theme 
placed in this folder will be automatically recognized and is available in main 
menu → settings → themes.

~/trx/

This folder contains the transactions of all users. transaction naming:

<ADDRESS>.<USER_STAMP>.<TRX_STAMP>

<ADDRESS>.<USER_STAMP> is the address of the sender while <TRX_STAMP>
is the creation date of the transaction in UNIX timestamp format (unix epoch 
time). Transactions are simple text files containing a header that includes all 
related information and a signature of the sending user.



~/userdata/

Contains a subfolder for each user that logged on on this machine. In this 
subfolder temporary user specific files:

all_assets.dat list of all assets
all_keys.dat list of all keys
all_accounts.dat list of all accounts
all_trx.dat list of all transactions
blacklisted_accounts.dat list of all deleted accounts
blacklisted_trx.dat list of all deleted transactions
depend_accounts.dat list of all depending accounts
depend_trx.dat list of all depending transactions
depend_confirmations.dat list of all depending transactions 

without enough confirmations
<YYYYMMDD>_ledger.dat ledger file of corresponding date
<YYYYMMDD>_scoretable.dat score file of corresponding date
<YYYYMMDD>_index_trx.dat list of all transactions the user has 

acknowledged on corresponding date

Files that have been extracted from transaction files or sync files are also 
stored there under ~/userdata/<USER_NAME>/temp/. These files are being 
extracted into the /temp-folder. From there they are either moved into the 
related folders or being deleted.



4. EXAMPLE TRANSACTION
-----BEGIN PGP SIGNED MESSAGE-----

Hash: SHA512

:TIME:1665066890

:AMNT:1.000000000|UCC

:SNDR:9d8c98a97b2c3e689afef90310a35130bde86fd6f43ef6764b391c40ba37f8dd.1613477808

:RCVR:ca2c6f1d030c0ea7e56893a89c32d6c86478b56ff40cfb327608ef47a58bc401.1613477644

:PRPS:86954a568d85d4e6b73569f5f8b2c44a956ba5b7acfcf55fca29159c

-----BEGIN PGP SIGNATURE-----

iQIzBAEBCgAdFiEEDWT9IMjKKYd6rKhIT+61NsV5pQUFAmM+54sACgkQT+61NsV5

pQXtXxAAwlE6Eift7OA+k+3CC0lzeBRjpqRoJmMKkeyH9dXjyHf2nEThx3mFADJ0

mppAPkrCHh9qGicsbv4xwU9ciXLClNgNu3RaZ3GrHPKfJR3FUTy/xKVRSaw/+S19

votpKy0HlLb6Lke9gLDjOhVLbQ0/EqwGfbLT2/mOiAavdKKmpDBc8QBqWyfFY8+B

pQNDXXESz68FX2hboFOvRMvyF0QRzFMNrpsjkG4W1hiSAoJ5ljKBokneDDsnV5FC

I887ds8gKu2sEpTYxwy2jI4M5oa39g6gtk/bJh/b3HxTk3QNULkIwrvOGes3KXfi

6ik8X2p37yeBD/HYNpH2c5ViHqAvjlFdwemShZWSX9UXTKGHBry2dNROx/yPzib4

rsHFKN/2l5UQ/0OwA0V8s8eEDpIYbrbQ/KqSLrXW45jGwI/w/tWJe4gqRPM27JAg

PYic+FwLUnYeEF93RIKsPB/Wtoa4vCsO8pPjvgVDav8WQh9YmyPmsU4AjMo7i4Jl

4hHg+R1ttRbXCBz9PQ+TxQHRFfOFaJRfEifHj2Aqli4PCxuWLx047UTc6PxlBE0w

cwHgz3Of0suc5DEyXhDD+eBSMUzNS4/NMlT30VvOauoMnoWDrTFgTddqlnX65T7O

V1Vkf3t5n99ys/wz9qRnRzFAHIAN0yfYfdApqO7K4+RUXktQW1s=

=g2B2

-----END PGP SIGNATURE-----

A transaction is actually a clearsigned text file in OpenPGP format. It contains 
all necessary information: the date of creation (TIME), the amount to transfer 
with asset definition (AMNT), the sender of the transaction (SNDR), the receiver
of the transaction (RCVR) and a purpose (PRPS).



5. Wallet installation
Assuming you use the packaging tool APT, the command apt-get install is 
used. Please note that if you are using any other packaging tool than APT the 
command for installing a package might be different. In this chase change apt-
get install to the command your packaging tool is using!

Install Git (you may use sudo in front):

apt-get install git

Create a directory wherever you want and step into this directory:

mkdir ucs
cd ucs

Clone the GitHub repository and step into this directory:

git clone https://github.com/universal-credit-system/wallet
cd wallet/

Now you can execute the install.sh script. The script will check for 
depending programs and if all depending programs are installed the setup will 
continue. If there is a program that needs to be installed the script will output 
the program names and then quit. In this case you have to install these 
programs first and then run install.sh script again:

./install.sh

After setup you can run ucs_client.sh:

./ucs_client.sh



6. Assets
The universal credit system supports the creation and use of tokens, here so 
called 'assets'. Assets can be fungible or non-fungible. All assets are stored 
under ~/assets/. The main difference between the currency UCC and assets is 
that there is no scoring done when transferring assets.

FUNGIBLE ASSETS

Fungible assets are assets that can be converted by all users. This means, that 
every user can exchange his balance to this asset. The exchange of  fungible 
assets is unlimited; there is no maximum amount that can be 
exchanged/converted. Below is an example of a fictitous fungible asset 
'TestFungibleToken' having the asset-symbol 'TFT.1655676000 ':

example fungible asset 'TFT.1655676000':

asset_description=TestFungibleToken
asset_price=2.000000000
asset_fungible=1

asset_description is the description of the assets, asset_price is the price per 
unit in UCC. asset_fungible=1 defines that this is a fungible asset. The import 
of fungible assets that other users have created is disabled per default. To 
enable the auto-import of fungible assets you have to modify the file 
control/config.conf and set 'import_fungible_assets=1'.

NON-FUNGIBLE ASSETS

Non-fungible assets are assets that cannot be converted/exchanged. To posess 
such a asset you either have to receive it from a owner or you have to be the 
initial owner yourself. The total amount of a non-fungible asset is defined as 
value asset_quantity. Below is an example of a fictitous non-fungible asset 
'TestNonFungibleToken' having the asset-symbol 'TNFT.1655676000':

example non-fungible asset'TNFT.1655676000':

asset_description=TestNonFungibleToken
asset_owner=9d8c98a97b2c3e689afef90310a35130bde86fd6f43ef6764b391c
40ba37f8dd.1613477808
asset_quantity=100.000000000
asset_fungible=0

asset_description is the description of the assets, asset_owner is the initial 
owner, asset_quantity is the number of tokens. asset_fungible=0 defines, that 
this is a non-fungible asset. The import of fungible assets that other users have
created is disabled per default. To enable the auto-import of fungible assets 
you have to modify the file control/config.conf and and set 
'import_non_fungible_assets=1'.



7. HOW TO SET UP A DAO
This topic is about how you can set up a decentralized autonomous organization 
(DAO).

To understand how UCS has implemented the idea of DAOs simply imagine the stocks 
of a company: depending on the number of stocks you own you also own a part of that
company. At some point the revenue of this company will be distributed among the 
owners of the stocks. The percentage of the revenue your will get is equal to the 
percentage of the company you own by the stocks. In UCS the concept of DAOs is 
limited to the fair distribution of amounts sent to that DAO among the DAO 
participants.

From a technical point of view a DAO consists of two assets: a fungible asset used to 
receive the revenues and a fungible or non-fungible asset that is used to reflect the 
owners. So the ‘stocks’ are simply fungible or non-fungible assets! Every owner of 
such a fungible or non-fungible asset will be considered as ‘stock owner’. The asset 
that is used to reflect these property rights is defined as ‘asset_owner=’ of the asset 
that is used to receive the revenues. The first asset acts as central receiver address for
the owners of the second asset.

The DAO has no voting process about what to do with the balance like it is done within 
the ethereum DAO. The users have to make agreements outside UCS and then forward
the balances themself to a second DAO that is handling the specific investment.

STEP 1 : SET UP A FUNGIBLE ASSET

This asset will act as address for all owners of asset DAO.1655676000.

example fungible asset 'DAOT.1655676000':

asset_description=DAOToken
asset_owner=DAO.1655676000
asset_price=1.000000000
asset_fungible=1

STEP 2 : SET UP A FUNGIBLE OR NON FUNGIBLE ASSET

Choose a non-fungible asset if you wish to have a fix number of property rights that 
cannot be increased. This means that other users cannot join the DAO on their own.

example non-fungible asset 'DAO.1655676000':

asset_description=DAO
asset_quantity=1000.000000000
asset_owner=9d8c98a97b2c3e689afef90310a35130bde86fd6f43ef6764b391c40ba37f
8dd.1613477808
asset_fungible=0

Choose a fungible asset if you want to have no fix number of property rights. This 
means any other user can join the DAO by transferring a amount to this asset:

example fungible asset 'DAO.1655676000':

asset_description=DAO
asset_price=1.000000000
asset_fungible=1



8. HOW TO CMD-MODE
Below you can find detailed examples of commands for cmd-mode. With these 
commands it is e.g. very easy to set up automated payment solutions.

HOW TO CREATE A USER

EXAMPLE COMMAND:
./ucs_client.sh -action create_user -user TESTUSER -password 
TESTPASSWORD

OUTPUT:
USER:<ACCOUNTNAME>
PIN:<PIN>
PASSWORD:>PW<          # NOTE: PW PUT IN ><
ADRESS:<ADRESS>
KEY:<KEYFILE>
KEY_PUB_HOME:ACCOUNTNAME_PIN_STAMP_pub.asc
KEY_PRV_HOME:ACCOUNTNAME_PIN_STAMP_priv.asc

NOTE: Currently the exported private is always stored in script /control/keys/-
folder while the public key is always stored in /keys-folder. So if you 
handover a path where these keys should be stored, it will not be 
used! These exported keys are your public and private backup keys - 
you better keep them under your pillow! With these keys you will be able 
to restore your account if everything is lost.

HOW TO CREATE A SMALL TRANSACTION (only pack new files, if 
possible)

EXAMPLE COMMAND:
./ucs_client.sh -action create_trx -user TESTUSER -pin 12345 
-password TESTPASSWORD -receiver ADRESS -amount 1.000000000 -asset
ASSET -purpose “PURPOSE TEXT“ -type partial -path 
/path/to/outputdir

NOTE: Type “partial” means the program will check whether sender 
and receiver have common transaction knowledge and if so it will only
add data to the transaction file that are new to the sender. This can 
reduce the size of a transaction file.

HOW TO CREATE A BIG TRANSACTION (pack all files)

EXAMPLE COMMAND:
./ucs_client.sh -action create_trx -user TESTUSER -pin 12345 
-password TESTPASSWORD -receiver ADRESS -amount 1.000000000 -asset
ASSET -purpose “PURPOSE TEXT“ -type full -path /path/to/outputdir

NOTE: Type “full” means it will pack all data independent of common 
transaction knowledge.



HOW TO PARTIALLY READ A TRANSACTION FILE (only unpack new files)

EXAMPLE COMMAND:
./ucs_client.sh -action read_trx -user TESTUSER -pin 12345 
-password TESTPASSWORD -type partial -path /path/to/file/file.trx

NOTE: Type “partial” means the program will check whether sender 
and receiver have common transaction knowledge and if so it will only
unpack data that are new to the sender. This is standard and you 
should always do it this way to   avoid that other files you already have 
being overwritten.

HOW TO FULLY READ A TRANSACTION FILE (unpack all files):

EXAMPLE COMMAND:
./ucs_client.sh -action read_sync -user TESTUSER -pin 12345 
-password TESTPASSWORD -type full -path /path/to/file/file.trx

NOTE: Type “full” means the program unpacks all data of the 
transaction file. This overrides your existing data and should only be 
done with a lot of precaution and awareness! E.g. this allows you to 
restore you data by a transaction file only if corrupted. BE CAREFUL 
WITH THIS!

HOW TO CREATE A SYNCRONISATION FILE (contains all files):

EXAMPLE COMMAND:
./ucs_client.sh -action create_sync -user TESTUSER -pin 12345 
-password TESTPASSWORD -path /path/to/outputdir

NOTE: As there is no explicit receiver for a synchronization file it 
always contains all data of all users. It is up to the receiver of the file 
which data to extract (full or partial).

HOW TO PARTIALLY READ A SYNCRONISATION FILE (only unpack new):

EXAMPLE COMMAND:        
./ucs_client.sh -action read_sync -user TESTUSER -pin 12345 
-password TESTPASSWORD -type partial -path /path/to/file/file.sync

NOTE: Type “partial” means the program will check whether sender 
and receiver have common transaction knowledge and if so it will only
unpack data that are new to the sender. This is standard a  nd you 
should always do it this way to   avoid that other files you already have 
being overwritten.



HOW TO FULLY READ A SYNCRONISATION FILE (unpack all):

EXAMPLE COMMAND:        
./ucs_client.sh -action read_sync -user TESTUSER -pin 12345 
-password TESTPASSWORD -type full -path /path/to/file/file.sync

NOTE: Type “full” means the program unpacks all data of the 
synchronization file. This overrides your existing data and should only
be done with a lot of precaution and awareness! E.g. this allows you 
to restore you data by a synchronization file only if corrupted. BE 
CAREFUL WITH THIS!

HOW TO SYNC WITH UCA

EXAMPLE COMMAND:
./ucs_client.sh -action sync_uca -user TESTUSER -pin 12345 
-password TESTPASSWORD 

NOTE: The action “sync_uca” will create no output if successful and 
will always exit with code 0 even if the receive/send of data to the 
defined UCA(s) failed. If receive/send to one more of UCAs failed it will
output a “ERROR” message containing used IP (<uca_ip>) and Port 
(<ucs_snd_port>) as defined in ~/control/uca.conf. .

HOW TO CREATE A BACKUP:

EXAMPLE COMMAND:
./ucs_client.sh -action create_backup

HOW TO RESTORE A BACKUP:

EXAMPLE COMMAND:
./ucs_client.sh -action restore_backup -path 
/path/to/ucs/backup/<STAMP>.bcp

HOW TO DISPLAY STATISTICS:

EXAMPLE COMMAND:
./ucs_client.sh -action show_stats -user TESTUSER -pin 12345 
-password TESTPASSWORD



9. Universal Credit Contractor
The contractor acts as a wrapper script for the ucs_client.sh script and 
allows the user to set up smart contracts for transactions. When executed the 
bash script ucs_contractor.sh will source the logic and perform actions based
on the logic and the ruleset.

WHAT IS A CONTRACT?

A contract always consists of at least two files:

• a file that contains the actual logic in the folder /contracts/ (that 
contains a definition of a function called contract_action() which is 
sourced) 

• a file that contains the ruleset in the folder /rulesets/ (definitions of 
variables used by the logic) 

Both files are handed over to ucs_contractor.sh via parameters. At 
execution, the logic of the contract is loaded and controlled with the variables 
of the rulesets file. In principle, any logic can be implemented.

HOW TO SETUP

STEP 1 : GET THE SOURCES

To run the contractor you need to have a full client set up with a user. See 
GitHub Readme how to install and run the client. Assuming you already have 
the client, step into ths directory and unpack the contractor:

tar -xvf contractor.tar

The tarball contains the following files/folders:

• the script ucs_contractor.sh 
• the folder /contracts/
• the folder /rulesets/
• the file /control/contractor_HELP.txt

The tarball also contains some example contracts (cashier, filter, accountant 
and tombola) and related rulesets for these contracts.

STEP 2 : DEFINE YOUR CONTRACT(S)

Create a smart contract logic and a ruleset based on your needs.

EXAMPLE 

The following example is a ruleset for the supplied smart contract 
accountant.logic. The smart contract accountant.logic acts as a simple 
accountant sending transactions based on received transactions. Only 
parameters related to the transaction can be defined as triggers and the action



is limited to the creation of new transaction(s). 

See below example ruleset accountant.ruleset:

ruleset_asset="YOUR_ASSET_HERE"
ruleset_sender="*"
ruleset_receiver="YOUR_ADRESS_HERE"
ruleset_amount="*"
ruleset_amount_comparison_operator=""
ruleset_amount_comparison_variable=""
ruleset_purpose="*"
ruleset_required_confirmations=0
contract_asset="${trx_asset}"
contract_sender="YOUR_ADRESS_HERE"
contract_sender_password="YOUR_PASSWORD_HERE"
contract_receiver="${trx_sender}"
contract_amount="${trx_amount}"
contract_purpose=`echo "${trx_file}"|sha256sum|cut -d ' ' -f1`
contract_type="partial"
alias send_trx='${script_path}/ucs_client.sh -action create_trx 
-sender ${contract_sender} -password "${contract_sender_password}"
-receiver ${receiver} -amount ${contract_amount} -asset $
{contract_asset} -purpose ${contract_purpose} -type $
{contract_type}'

The above ruleset ensures that the smart contract accountant.logic sends 
all transactions that were sent to you back to the sender (if you enter a asset, 
your address and your password). 

accountant.logic will look for transactions:

• matching the defined asset
(ruleset_asset="YOUR_ASSET_HERE") 

• having any sender (ruleset_sender="*") 
• you as receiver (ruleset_receiver="PUT_YOUR_ADRESS_HERE") 
• any amount (ruleset_amount="*") 
• any purpose (ruleset_purpose="*") 
• with no confirmations (ruleset_required_confirmations=0) 

If one or multiple transactions match this criteria the contractor will create a 
transaction:

• having the initial asset that was sent as asset to send 
(contract_asset="${trx_asset}") 

• having the initial amount that was sent as amount to send 
(contract_amount="${trx_amount}") 

• the initial sender as receiver
(contract_receiver="${trx_sender}") 

• with a sha256 hash of the initial trx filename as purpose 
(contract_purpose=`echo "${trx_file}"|sha256sum|cut -d ' ' 
-f1) 

• the transaction type is ‘partial’. 

And finally the alias “send_trx” is defined. That is actually the action that is 



being triggered.

STEP 3 : SCHEDULE THE CONTRACTOR

You either manually execute the ucs_contractor.sh or schedule a job for this 
e.g. with CRON. To execute your contract simply handover your ruleset and 
your contract with full path:

./ucs_contractor.sh -ruleset /path/to/contract.ruleset 
-contract /path/to/contract.logic 

Please note that accountant.logic will create no output If no transaction 
matched the ruleset.

To display the help text run:

./ucs_contractor.sh -help

More information:
At execution the ucs_contractor.sh script will check if a contract file is there (
parameter -contract <PATH> ) and if a ruleset file is there ( parameter 
-ruleset <PATH> ). If both files are there the function contract_action() of 
the contract logic file will be sourced and called. That’s all.

This means that if you need a ruleset file the logic to source/read it must be 
placed within the contract logic ( see accountant.logic and tombola.logic ).
So the ruleset file is NOT sourced within ucs_contractor.sh. The contractor 
only loads the logic file and calls the function within that file. This logic file can 
contain whatever you want. All triggers and actions must be defined in a 
function named contract_action().

Depending on what you want to do you might not need a ruleset file, but the 
ucs_contractor.sh will still check if that file is there. A solution would be to 
handover the same path for -ruleset as for -contract. 

The fact that contract logic and ruleset are separate files allows the user to run 
the same contract logic with different rulesets!



10. UCA Link Servers

UCS allows user to set up their own UCA link servers. UCA link servers can be 
considered as nodes that help spreading transaction knowledge by automating 
the sync process.

STEP 1 : GET THE SOURCES

First of all you have to get D. J. Bernstein's ucspi-tcpserver (see 
http://cr.yp.to/ucspi-tcp.html). There are several ways to get it run. While you 
can make your own Build we have installed the ucspi-tcp-ipv6 debian package
via apt-get. 

After you have installed the client, step into this directory and extract the 
server files:

tar -xvf server.tar

The following files will be extracted:

control/server.conf
controller.sh
logwatch.sh
filewatch.sh
start_server.sh
stop_server.sh
sender.sh
receiver.sh

Also the folders /log/ and /server/ will be extracted. The folder /log/ is 
where the server will write the logfiles to. In the folder /server/ the temporary
files of the server are stored.

STEP 2 : CUSTOMIZE THE SERVER

Modfiy the file control/server.conf . At least you have to enter your IP-
address and the logon credentials (username, PIN, password) of the user that 
should be used by the server.

STEP 3 : PUBLISH YOUR UCA LINK SERVER DETAILS

Add a line to uca.conf file in the /control/ folder. 
The format should be:

IP_OR_URL,SEND_PORT,RECEIVE_PORT,DESCRIPTION,

like e.g.:
127.0.0.1,15000,15001,CUSTOM SERVER,

Send this to your friends and the people that you want to use your server. You 
could also publish the details in this Forum or somewhere else on the web.

http://cr.yp.to/ucspi-tcp.html


STEP 4 : START THE SERVER

You start the server by running the start_server.sh script:

./start_server.sh

The script will start controller.sh that acts as daemon running and 
monitoring the scripts sender.sh, receiver.sh, logwatch.sh and 
filewatch.sh in the background. People can now automatically sync with you 
by using the UCA link functionality.

STEP 5 : STOP THE SERVER

You stop the server by running the stop_server.sh script:

./stop_server.sh



11. Universal Credit Webwallet

The webwallet is an easy built solution to provide access to the wallet via a 
webpage. It was developed and tested on a setup with NGINX and PHP-FPM 
(FastCGI).

The users start at a landing page named index.html. The users credentials are
send via POST method to the script wallet.php which runs on the server side. 
The script itself then calls a shell script named webwallet.sh. The 
webwallet.sh script acts as a connector between the wallet client and the 
webserver. The webwallet script triggers the calls of ucs_client.sh, catches 
the output and builds a webpage for the user based on that data. The script 
basically outputs html code to STDOUT that is then forwarded to the webserver.

WEBWALLET INSTALLATION

STEP 1 : HAVE A RUNNING NGINX WITH PHP-FPM SETUP

Once you have a working set up it is important to increase the timeouts that 
are set in the NGINX config. Add the following lines to your NGINX server 
config.:

proxy_read_timeout 300;
proxy_connect_timeout 300;
proxy_send_timeout 300;

In the PHP section of the NGINX server config you have to add the following line
right below the line containing fastcgi_pass:

fastcgi_read_timeout 300s;

These timeout values can be different, but keep in mind that depending on 
your hardware it could take some minutes for the script to calculate everything.
So to avoid getting a server timeout we suggest to set this value to few 
minutes. You also have to make sure that the user under which PHP is running 
has writeaccess to the wallets home directory because files are uploaded into 
this folder.

STEP 2 : EXTRACT THE SOURCES

Step into the wallet home directory and unpack webwallet_home.tar:

tar -xvf webwallet_home.tar

After that extract the file webwallet_www-data.tar. The target folder that is 
used in below command is your webservers directory (/var/www/html). If your 
webserver uses a different directory you have to change the path after ‘-C’ 
option to the one that your webserver is using (make sure you have write 
permissions for this directory ! If you don’t have these permissions use sudo in



front of this command):

tar -xvf webwallet_www-data.tar -C /var/www/html

STEP 3 : RUN THE INSTALL SCRIPT

Now run the installer script (the user that runs this scirpt must have write access to the 
webservers directory e.g. /var/www/html so you may used sudo in front and again 
change /var/www/html to the directory your webserver is using if it differs):

sudo ./install_webwallet.sh /var/www/html

STEP 4 : START NGINX AND PHP-FPM

Start NGINX and PHP-FPM and you should be able to access the webwallet via 
browser.


